Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Соловьев Андрей Борисович

Должность: Директор

Дата подписания: 27.09.2023 10:43:04 Уникальный программный ключ:

c83cc511feb01f5417b9362d2700339df14aa123

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ) ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» В Г. ТАГАНРОГЕ РОСТОВСКОЙ ОБЛАСТИ ПИ (филиал) ДГТУ в г. Таганроге

У	ТВЕРЖДАЮ	
Ді	иректор	
		/А.Б. Соловьев/
«	»	2023 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по дисциплине

МДК.02.03 Математическое моделирование

по специальности СПО 09.02.07 «Информационные системы и программирование»

Лист согласования

Фонд оценочных средств по учебному предмету математическое моделирование разработан на основе Федерального государственного образовательного стандарта (далее — $\Phi\Gamma$ OC) по специальности/профессии (специальностям/профессиям) среднего профессионального образования (далее — $C\Pi$ O) 09.02.07. «Информационные системы и программирование».

Разработчик(и):		
Преподаватель	/E.C.Филонова/«	»2023 г
Фонд оценочных средств рассмотро информатика»	ен и одобрен на заседании циклов	ой комиссии «Прикладная
Протокол № от «»	2023 г.	
Председатель цикловой комиссии _	/O.В.Андриян/ «_	»2023 г.
Согласовано:		
Рецензенты:		
ООО «КадСис»	директор	Д.В. Шкуркин
АО «Красный гидропресс»	зам. начальника ОИТ	С.С. Пирожков
ВВЕДЕН ВПЕРВЫЕ		

Содержание

1 Паспорт фонда оценочных средств	4
1.1 Область применения фонда оценочных средств	4
2 Фонд оценочных средств	5
2.1 Вопросы для текущего контроля по учебной дисциплине	6
2.2 Вопросы для подготовки к экзамену	16
2.3 Критерии оценки тестов	18
2.4 Оценивание выполнения презентаций	19
3 Информационное обеспечение обучения	20

Паспорт фонда оценочных средств

І. Паспорт фонда оценочных средств

1. Область применения фонда оценочных средств

Фонд оценочных средств для текущего контроля успеваемости, проведения промежуточной аттестации (оценивания промежуточных и окончательных результатов обучения по дисциплине) обучающихся по дисциплине «Математическое моделирование» на соответствие их учебных достижений требованиям образовательной программы подготовки специалистов среднего звена по специальности 09.02.07 Информационные системы и программирование.

Таблица 1

2. Результаты освоения учебного предмета, дисциплины (модуля), практики

Контролируемые компетенции (шифр	Планируемые результаты обучения (знает, умеет, владеет, имеет навык)
компетенции) ОК1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.	Знать: основы математического анализа; основы линейной алгебры и аналитической геометрии; основы дифференциального и интегрального исчисления; Уметь: выполнять операции над матрицами и решать системы линейных уравнений; решать задачи используя уравнения прямых и кривых второго порядка на плоскость; применять методы дифференциального и интегрального исчисления Владеть: возможностями использования умений и навыков, приобретенных в ходе изучения учебного курса (дисциплины), в будущей профессионально-
ОК 2. Организовывать собственную деятельность, определять методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.	трудовой деятельности Знать: основы математического анализа; основы линейной алгебры и аналитической геометрии; основы дифференциального и интегрального исчисления; Уметь: выполнять операции над матрицами и решать системы линейных уравнений; решать задачи используя уравнения прямых и кривых второго порядка на плоскость; применять методы дифференциального и интегрального исчисления Владеть: практическим опытом планирования работ, исходя из целей и задач деятельности, определенных
	руководителем; выбора средств реализации целей и задач, поставленных руководителем

2. Фонд оценочных средств

2.1 Текущий контроль успеваемости

- 1. Математическое моделирование это средство для
- а) изучения свойств реальных объектов в рамках поставленной задачи
- б) упрощения поставленной задачи
- в) поиска физической модели
- г) принятия решения в рамках поставленной задачи
- 2. Какой модели быть не может?
- а) вещественной, физической
- б) идеальной, физической
- в) вещественной, математической
- г) идеальной, математической
- 3. По поведению математических моделей во времени их разделяют на
- а) детерминированные и стохастические
- б) статические и динамические
- в) непрерывные и дискретные
- г) аналитические и имитационные
- 4. Как называется замещаемый моделью объект?
- а) копия
- б) оригинал
- в) шаблон
- г) макет
- 5. Что такое математическая модель?
- а) точное представление реальных объектов, процессов или систем, выраженное в математических терминах и сохраняющее существенные черты оригинала
- б) точное представление реальных объектов, процессов или систем, выраженное в физических терминах и сохраняющее существенные черты оригинала
- в) приближенное представление реальных объектов, процессов или систем, выраженное в математических терминах и сохраняющее существенные черты оригинала
- г) приближенное представление реальных объектов, процессов или систем, выраженное в физических терминах и сохраняющее существенные черты оригинала
- 6. Какие виды математических моделей получаются при разделении их по принципам построения?
- а) аналитические, имитационные
- б) детерминированные, стохастические
- в) стохастические, аналитические
- г) детерминированные, имитационные
- 7. На какой язык должна быть "переведена" прикладная задача для ее решения с использованием ЭВМ?
- а) неформальный математический язык
- б) формальный математический язык

- в) формальный физический язык
- г) неформальный физический язык
- 8. Что такое линейное программирование
- а) это направление математического программирования, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием
- б) раздел математического программирования, изучающий подход к решению нелинейных задач оптимизации специальной структуры
- в) метод оптимизации, приспособленный, к задачам, в которых процесс принятия решения, может быть, разбит на отдельные этапы (шаги)
- г) это направление математического программирования, в котором целевой функцией или ограничением является нелинейная функция
- 9. Какой метод относится к методам решения задач линейного программирования
- а) симплекс-метод
- б) метод множителей Лагранжа
- в) метод хорд
- г) метод половинного деления
- 10. Если в критериальной строке симплексной таблицы нет отрицательный коэффициентов, это означает, что
- а) задача неразрешима
- б) найден оптимальный план на максимум
- в) найден оптимальный план на минимум
- г) задача имеет бесконечно много решений
- 11. В каком случае задача математического программирования является линейной?
- а) если ее целевая функция линейна
- б) если ее ограничения линейны
- в) если ее целевая функция и ограничения линейны
- г) нет правильного ответа
- 12. Транспортная задача это
- а) математическая задача линейного программирования специального вида о поиске оптимального распределения однородных объектов из аккумулятора к приемникам с минимизацией затрат на перемещение
- б) математическая задача нелинейного программирования специального вида о поиске оптимального распределения однородных объектов из аккумулятора к приемникам с минимизацией затрат на перемещение
- в) математическая задача дробно-линейного программирования специального вида о поиске оптимального распределения однородных объектов из аккумулятора к приемникам с минимизацией затрат на перемещение.
- г) нет правильного ответа
- 13. Транспортная задача линейного программирования называется закрытой, если:
- а) суммарные запасы равны суммарным потребностям
- б) суммарные запасы больше суммарных потребностей
- в) суммарные запасы меньше суммарных потребностей
- г) целевая функция ограничена

- 14. В соответствии с основной теоремой теории транспортных задач всегда имеет решение
- а) открытая транспортная задача
- б) закрытая транспортная задача
- в) транспортная задача с ограничениями типа равенств
- г) транспортная задача с ограничениями типа неравенств
- 15. При построении опорного плана транспортной задачи методом северо-западного угла первой подлежит заполнению
 - а) клетка, расположенная в левом верхнем углу таблицы планирования
 - б) клетка, расположенная в правом верхнем углу таблицы планирования
 - в) клетка с минимальным значением тарифа
 - г) клетка с максимальным значением тарифа
- 16. При построении опорного плана транспортной задачи на минимум методом минимального элемента первой подлежит заполнению
 - а) клетка, расположенная в левом верхнем углу таблицы планирования
 - б) клетка, расположенная в правом верхнем углу таблицы планирования
 - в) клетка с минимальным значением тарифа
 - г) клетка с максимальным значением тарифа
- 17. Первым шагом алгоритма метода потенциалов является:
 - а) нахождение первого псевдоплана
 - б) нахождение первого условно-оптимального плана
 - в) нахождение первого опорного плана
 - г) нахождение первого базисного решения
- 18. Теория динамического программирования используется:
 - а) для решения задач оптимизации без ограничений
 - б) для решения задач управления многошаговыми процессами
 - в) для решения задач нелинейного программирования
 - г) для решения задач линейного программирования
- 19. Для решения задачи динамического программирования используется:
 - а) принцип оптимальности Беллмана
 - б) принцип максимума Понтрягина
 - в) принцип симметрии
 - г) принцип максимума правдоподобия
- 20. К задачам динамического программирования относится:

- а) задача планирования замены оборудования
- б) задача о рационе
- в) транспортная задача линейного программирования
- г) задача о назначениях
- 21. В методе динамического программирования под управлением понимается
 - а) совокупность решений, принимаемых на каждом этапе для влияния на ход развития процесса;
 - б) совокупность решений, принимаемых на первом этапе процесса;
 - в) совокупность решений, принимаемых на последнем этапе процесса
 - г) совокупность решений, принимаемых на предпоследнем этапе процесса
- 22. При решении задачи динамического программирования строятся:
 - а) рекуррентные функциональные уравнения Беллмана
 - б) функции Лагранжа
 - в) штрафные функции
 - г) сечения Гомори
- 23. Что такое системы массового обслуживания
 - а) это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания
 - б) это совокупность математических выражений, описывающих входящий поток требований, процесс обслуживания и их взаимосвязь
 - в) это такие системы, в которые в определенные моменты времени поступают заявки на обслуживание
 - г) нет правильного ответа
- 24. По наличию очередей системы массового обслуживания делятся на
 - а) простые, сложные
 - б) открытые, замкнутые
 - в) ограниченные СМО, неограниченные СМО
 - г) СМО с отказами, СМО с очередью
- 25. По источнику требований СМО делятся на
 - а) простые, сложные
 - б) открытые, замкнутые
 - в) ограниченные СМО, неограниченные СМО
 - г) СМО с отказами, СМО с очередью
- 26. Как называется объект, порождающий заявки в СМО

- а) очередь
- б) диспетчер
- в) генератор заявок
- г) узел обслуживания
- 27. Из чего состоит узел обслуживания в СМО
 - а) из диспетчера и генератора заявок
 - б) из конечного числа каналов
 - в) из очереди и диспетчера
 - г) нет правильного ответа
- 28. Как называется принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания
 - а) дисциплина очереди
 - б) механизм обслуживания
 - в) процедура обслуживания
 - г) конфигурация очереди
- 29. Как называется дисциплина очереди, определяемая следующим правилом: «первым пришел первый обслуживается»
 - a) LIFO
 - б) GIFO
 - B) FIFO
 - г) нет правильно ответа
- 30. Как называется дисциплина очереди, определяемая следующим правилом: "пришел последним обслуживается первым"
 - a) LIFO
 - б) GIFO
 - B) FIFO
 - г) нет правильно ответа
- 31. Задача о замене оборудования является задачей
 - а) нелинейного программирования
 - б) динамического программирования
 - в) линейного программирования
 - г) целочисленного программирования
- 32. В процессе динамического программирования раньше всех планируется
 - а) первый шаг
 - б) последний шаг
 - в) как сказано в условии задачи
 - г) предпоследний шаг

- 33. Задача, которая возникает при необходимости максимизации дохода от реализации продукции, производимой некоторой организацией, при этом производство ограничено имеющимися сырьевыми ресурсами, называется
 - а) задача коммивояжера
 - б) задача о составлении плана производства
 - в) задача о назначении
 - г) задача о рюкзаке
- 34. Метод минимального элемента это
 - а) один из комбинаторных методов дискретного программирования, при котором гиперплоскость, определяемая целевой функцией задачи, вдавливается внутрь многогранника планов соответствующей задачи линейного программирования до встречи с ближайшей целочисленной точкой этого многогранника
 - б) один из методов отсечения, с помощью которого решаются задачи целочисленного программирования
 - в) один из группы методов определения первоначального опорного плана транспортной задачи
 - г) один из методов, упрощающий определение исходного опорного плана задачи линейного программирования и симплекс-таблицы
- 35. Метод потенциалов это
 - а) один из методов проверки опорного плана транспортной задачи на оптимальность
 - б) один из комбинаторных методов дискретного программирования, при котором гиперплоскость, определяемая целевой функцией задачи, вдавливается внутрь многогранника планов соответствующей задачи линейного программирования до встречи с ближайшей целочисленной точкой этого многогранника
 - в) один из методов отсечения, с помощью которого решаются задачи целочисленного программирования
 - г) один из группы методов определения первоначального опорного плана транспортной задачи
- 36. Метод северо-западного угла это
 - а) один из методов проверки опорного плана транспортной задачи на оптимальность
 - б) один из комбинаторных методов дискретного программирования, при котором гиперплоскость, определяемая целевой функцией задачи, вдавливается внутрь многогранника планов соответствующей задачи линейного программирования до встречи с ближайшей целочисленной точкой этого многогранника
 - в) один из методов отсечения, с помощью которого решаются задачи целочисленного программирования
 - г) один из группы методов определения первоначального опорного плана транспортной задачи
- 37. В задачах динамического программирования шаговое управление должно выбираться
 - а) с учетом последствий в будущем
 - б) с учетом предшествующих шагов
 - в) наилучшим для данного шага
 - г) лучше, чем предыдущее
- 38. Метод динамического программирования применяется для решения
 - а) задач, которые нельзя представить в виде последовательности отдельных шагов
 - б) многошаговых задач
 - в) только задач линейного программирования

- г) задач макроэкономики
- 39. Принцип оптимальности Беллмана состоит в том, что
 - а) каковы бы ни были начальное состояние на любом шаге и управление, выбранное на этом шаге, последующие управления должны выбираться оптимальными относительно состояния, к которому придёт система в конце данного шага
 - б) совокупность принимаемых решений обеспечит наибольшую локальную выгоду на каждом шаге процесса
 - в) совокупность принимаемых решений обеспечит наибольшую локальную выгоду на последнем шаге процесса
 - г) нет правильного ответа
- 40. Часть математического программирования, задачами которой является нахождение экстремума линейной целевой функции на допустимом множестве значений аргументов называется
 - а) линейное программирование
 - б) динамическое программирование
 - в) квадратичное программирование
 - г) дискретное программирование
- 41. К какому классу моделей можно отнести спичечный коробок, если представить его моделью системного блока ПК при планировании своего рабочего места?
 - а) это идеальная, математическая модель
 - б) это вещественная, натурная модель
 - в) это вещественная, физическая модель
 - г) это не является моделью
- 42. Какая из задач не имеет аналитической модели?
 - а) поиск оптимального раскроя листа фанеры
 - б) демодуляция аналогового сигнала
 - в) расчет расхода топлива по заданной формуле
 - г) распознавание текста
- 43. Какая математическая модель не относится к стохастическим?
 - а) идеальный газ
 - б) квантовый осциллятор
 - в) материальная точка
 - г) ни одна из предложенных
- 44. Материальная точка это не только математическая, но и
 - а) натурная модель
 - б) физическая модель
 - в) наглядная модель
 - г) знаковая модель
- 45. Во время поиска лучшего результата были построены две различные математические модели: эксперимент на ЭВМ, моделирующий систему атомов, и дифференциальная система уравнений, решенная численно, от двух полученных результатов взяли среднеквадратичный. Можно ли считать такой метол моделью?

- а) да, это вещественная, математическая
- б) да, это идеальная, математическая
- в) да, это вещественная натурная
- г) нет
- 46. Какое максимальное количество моделей одного объекта можно составить?
 - а) любое количество
 - б) 1
 - в) 3
 - г) 7
- 47. Сколько классов моделей существует?
 - a) 4
 - **6)** 2
 - в) 3
 - г) нет правильного ответа
- 48. Какие модели относятся к классу вещественных моделей?
 - а) физические, натурные
 - б) идеальные, физические
 - в) наглядные, идеальные
 - г) натурные, идеальные
- 49. Какие модели нельзя отнести к классу мысленных моделей?
 - а) физические
 - б) натурные
 - в) математические
 - г) наглядные
- 50. Какие модели входят в состав идеальных математических моделей?
 - а) аналитические, функциональные, имитационные, комбинированные
 - б) аналоговые, структурные, геометрические, графические, цифровые и кибернетические
 - в) символы, алфавит, языки программирования, упорядоченная запись, топологическая запись, сетевое представление
 - г) нет правильного ответа
- 51. В чем заключается построение математической модели?
 - а) в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста математическими величинами, и факторами, влияющими на конечный результат
 - б) в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат
 - в) в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно связь между теми или иными процессами и явлениями, между интересующими специалиста математическими величинами, и факторами, влияющими на конечный результат
 - г) в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно

связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат

- 52. В зависимости от характера исследуемых реальных процессов и систем, на какие группы могут быть разделены математические модели?
 - а) непрерывные, имитационные
 - б) детерминированные, стохастические
 - в) имитационные, детерминированные
 - г) стохастические, имитационные
- 53. Какие группы математических моделей не являются результатом распределения моделей по их поведению во времени?
 - а) статические, динамические
 - б) динамические, изоморфные
 - в) изоморфные, динамические
 - г) непрерывные, изоморфные
- 54. На какие группы можно разделить математические модели по виду входной информации?
 - а) статические, непрерывные
 - б) дискретные, непрерывные
 - в) динамические, непрерывные
 - г) динамические, статические
- 55. На какие группы можно разделить математические модели по степени их соответствия реальным объектам, процессам или системам?
 - а) стохастические, изоморфные
 - б) изоморфные, гомоморфные
 - в) детерминированные, стохастические
 - г) нет правильного ответа
- 56. Как называется модель, если между ней и реальным объектом, процессом или системой существует полное поэлементное соответствие?
 - а) стохастическая
 - б) изоморфная
 - в) детерминированная
 - г) гомоморфная
- 57. Как называются модели, в которых предполагается отсутствие всяких случайных воздействий и их элементы (элементы модели) достаточно точно установлены?
 - а) статические
 - б) дискретные
 - в) детерминированные
 - г) динамические
- 58. В каком моделировании функционирование объектов, процессов или систем описывается набором алгоритмов?
 - а) аппроксимационном
 - б) имитационном
 - в) аналитическом
 - г) нет правильного ответа

- 59. Какие характеристики объекта, процесса или системы устанавливаются на этапе выбора математической модели?
 - а) дискретность, изоморфность
 - б) линейность, стационарность
 - в) изоморфность, линейность
 - г) стационарность, дискретность
- 60. Посредством каких конструкций, математические модели описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи?
 - а) логико-математических конструкций
 - б) статистических конструкций
 - в) вероятностных конструкций
 - г) нет правильного ответа
- 61. Что не входит в предмет математического моделирования?
 - а) построение алгоритма, моделирующего поведение объекта (системы)
 - б) корректировка построенной модели
 - в) поиск закономерностей поведения объекта (системы)
 - г) построение натурной модели
- 62. Какие изучаются зависимости между величинами, описывающими процессы, при их моделировании?
 - а) качественные и количественные
 - б) только качественные
 - в) только количественные
 - г) нет правильного ответа
- 63. В каких процессах вычислительный эксперимент является единственно возможным?
 - а) где натурный эксперимент может привести к очень большим объемам работ
 - б) где натурный эксперимент может привести к неверным результатам
 - в) где натурный эксперимент опасен для жизни и здоровья людей
 - г) нет правильного ответа
- 64. С чего обычно начинается построение математической модели?
 - а) с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы
 - б) с построения и анализа математической модели, которая наиболее полно соответствует рассматриваемому объекту, процессу или системе
 - в) с анализа математической модели рассматриваемого объекта
 - г) нет правильного ответа
- 65. Какой характер носят выводы, полученные в результате исследования гипотетической модели?
 - а) абстрактный
 - б) условный
 - в) точный
 - г) нет правильного ответа
- 66. Что необходимо сделать для того, чтобы проверить выводы, полученные в результате исследования гипотетической модели?

- а) необходимо сопоставить результаты исследования модели на ЭВМ с результатами натурного эксперимента
- б) необходимо провести повторное исследование модели и сопоставить результаты двух исследований
- в) необходимо провести исследование модели несколько раз и сопоставить результаты данных исследований
- г) нет правильного ответа
- 67. При исследовании гипотетической модели какого характера получатся выводы?
 - а) абстрактного
 - б) условного
 - в) гипотетического
 - г) динамического
- 68. Какими знаниями необходимо обладать для построения математической модели в прикладных задачах?
 - а) только специальными знаниями об объекте
 - б) только математическими знаниями
 - в) математическими знаниями и специальными знаниями об объекте
 - г) нет правильного ответа
- 69. Укажите метод, неприменяемый для компьютерного моделирования:
 - а) численное решение
 - б) точное решение в виде формул
 - в) экспериментальный анализ
 - г) нет правильного ответа
- 70. Численный метод предполагает решение в бесконечном цикле итераций. Когда следует прервать процесс вычисления?
 - а) в момент, когда решение будет меняться от итерации к итерации менее чем на 1%
 - б) когда будет достигнута заданная степень точности
 - в) в случае если число начнет расти
 - г) нет правильного ответа
- 71. Какая задача не поддается точному решению на ЭВМ в виде формул?
 - а) интегральное уравнение 1-го порядка
 - б) дифференциально-интегральная система уравнений
 - в) система нелинейных уравнений
 - г) все указанные поддаются
- 72. Какой из методов имеет приближенный характер?
 - а) точное решение в виде формул
 - б) численное решение
 - в) оба указанных метода
 - г) нет правильного ответа
- 73. В чем состоит суть компьютерного моделирования?
 - а) на основе математической модели с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, уточняется модель

- б) в создании математической модели исследуемых объектов
- в) посредством рассмотрения исследуемых объектов с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, и составляется математическая модель
- г) в создании точной копии исследуемых объектов
- 74. Какой из экспериментов наиболее выгодно применять для исследования большого числа вариантов проектируемого объекта или процесса для различных режимов его эксплуатации?
 - а) прогнозный
 - б) вычислительный
 - в) натурный
 - г) нет правильного ответа
- 75. Какое преимущество имеет вычислительный эксперимент по сравнению с натурным экспериментом?
 - а) короткие сроки и минимальные материальные затраты
 - б) только короткие сроки получения результатов
 - в) только минимальные материальные затраты
 - г) нет правильного ответа
- 76. Какими методами следует решать системы, состоящие из смешанных (линейных и нелинейных) уравнений?
 - а) точными
 - б) приближенными
 - в) оба предложенных метода годятся
 - г) никакими из предложенных
- 77. Укажите существующие группы решения математических задач
 - а) численные, точные
 - б) приближенные, точные
 - в) численные, приближенные
 - г) алгоритмические, приближенные
- 78. Какие процессы должны отражать математические модели в задачах проектирования или исследования поведения реальных объектов, процессов или систем?
 - а) реальные физические нелинейные процессы, протекающие в реальных объектах
 - б) реальные математические нелинейные процессы, протекающие в реальных объектах
 - в) реальные физические линейные процессы, протекающие в реальных объектах
 - г) реальные математические линейные процессы, протекающие в реальных объектах
- 79. Для чего могут применяться результаты проверки адекватности математической модели и реального объекта, процесса или системы?
 - а) только для корректировки математической модели
 - б) только для решения вопроса о применимости построенной математической модели
 - в) для корректировки математической модели или для решения вопроса о применимости построенной математической модели
 - г) нет правильного ответа
- 80. Что происходит с результатами исследований на ЭВМ при проверке адекватности математической модели и реального объекта, процесса или системы?

а) сравниваются с результатами эксперимента на опытном натурном образце

- б) принимаются в качестве итоговых результатов
- в) не принимаются во внимание
- г) нет правильного ответа

Ключи к тестам

1. a	2. 6	3. б	4. б
5. в	6. a	7. б	8. a
9. a	10. б	11. в	12. a
13. a	14. б	15. a	16. в
17. в	18. б	19. a	20. a
21. a	22. a	23. a	24. г
25. б	26. в	27. б	28. a
29. в	30. a	31. б	32. б
33. б	34. в	35. a	36. г
37. a	38. б	39. a	40. a
41. в	42. г	43. в	44. в
45. б	46. a	47. б	48. a
49. б	50. a	51. г	52. б
53. г	54. б	55. б	56. б
57. в	58. б	59. б	60. a
61. г	62. в	63. в	64. a
65. б	66. a	67. б	68. в
69. в	70. б	71. г	72. в
73. a	74. б	75. a	76. б
77. a	78. a	79. в	80. a

2.1 Промежуточная аттестация

Вопросы для подготовки к экзамену.

- 1. Модели и моделирование. Основные понятия, определения.
- 2. Сущность моделирования
- 3. Свойства моделей, цели моделирования.
- 4. Преимущества математического моделирования
- 5. Цели моделирования и принципы построения математических моделей
- 6. Классификация математических моделей.
- 7. Классификация математических моделей в зависимости от сложности объекта моделирования.
- 8. Классификация математических моделей в зависимости от оператора модели
- 9. Классификация математических моделей в зависимости от параметров модели
- 10. Классификация математических моделей в зависимости от целей моделирования и методов исследования
- 11. Этапы построения математической модели
- 12. Обследование объекта моделирования
- 13. Концептуальная и математическая постановка задачи моделирования.
- 14. Методики предварительной проверки корректности модели

- 15. Выбор и обоснование выбора метода решения задачи-
- 16. Реализация математической модели в виде программы для ЭВМ
- 17. Проверка адекватности модели
- 18. Формальное подтверждение (или обоснование) адекватности разработанной модели
- 19. Оценка устойчивости и чувствительности модели
- 20. Практическое использование построенной модели и анализ результатов моделирования
- 21. Программная реализация конечно-разностного метода. Сходимость и устойчивость ЧМ
- 22. Суть МКР
- 23. Постановка задачи приближения функций
- 24. Сетки и сеточные функции. Свойства сеточной функции
- 25. Аппроксимация и интерполирование функций, три проблемы интерполяции
- 26. Классификация методов интерполяции
- 27. Интерполяционные полиномы
- 28. Интерполяционный многочлен Лагранжа
- 29. Табличные разности, их свойства.
- 30. Особенности задания табличных функций приближенными числами
- 31. Центральные разности, интерполяционные формулы Ньютона при равноотстоящих узлах
- 32.Интерполяционные формулы Ньютона при неравноотстоящих узлах Некоторые свойства разностных отношений
- 33. Интерполяционные формулы Гаусса
- 34. Интерполяционные формулы Стирлинга и Бесселя
- 35. Оценка погрешности интерполирования
- 36. Оптимальный выбор узлов интерполирования
- 37. Свойства многочленов Чебышева
- 38. Устойчивость интерполяционного полинома к погрешностям задания функции Константа Лебега
- 39. Сходимость интерполяционного процесса, примеры Бернштейна и Рунге
- 40. Интерполирование на сетках с кратными узлами
- 41. Рациональная интерполяция
- 42. Недостатки глобальной интерполяции, альтернатива глобальной интерполяции, интерполяция сплайнами, основные понятия
- 43. Линейный, параболический и кубический сплайны
- 44. Среднеквадратичное приближение функций (Метод наименьших квадратов). Постановка задачи.
- 45. Подбор параметров линейной функции и функции 2 порядка МНК
- 46. МНК по базисным функциям, последовательность действий для реализации МНК, замечания о выборе аналитической формулы
- 47. Численное дифференцирование, порядок точности численного дифференцирования 48. Некорректность операции численного

дифференцирования

- 49. Решение обыкновенных дифференциальных уравнений, основные понятия, виды задач
- 50. Численное решение задачи Коши
- 51. Простейшие методы численного решения задачи Коши, метод Эйлера и его модификации
- 52. Методы Рунге-Кутта, порядок точности метода
- 53. Одноэтапный и двухэтапный методы решения Рунге-Кутта, геометрическая интерпретация метода Рунге-Кутта второго порядка
- 54. Четырехэтапный метод Рунге-Кутта, его геометрическая интерпретация
- 55. Численные методы решения систем обыкновенных дифференциальных уравнений
- 56. Планирование эксперимента. Задачи, решаемые планированием эксперимента. Классификация эксперимента по характеру задач, решаемых экспериментатором. 57. Этапы планирования и организации эксперимента
- 58. Основные понятия планирования эксперимента Основные принципы планирования эксперимента Основная цель планирования эксперимента
- 59. Регрессионная модель, критерии выбора аппроксимирующей функции регрессионной модели
- 60. Планирование пассивного эксперимента Однофакторный и многофакторный пассивный эксперимент
- 61. Планирование активного эксперимента. Задачи планирования активного эксперимента, выбор факторов и требования к ним
- 62. Планирование полного факторного эксперимента Выбор локальной области факторного пространства
- 63. Выбор интервалов варьирования факторов при низкой, средней и высокой точности варьирования факторов
- 64. Матрицы планирования эксперимента Приемы перехода от матрицы меньшей размерности к матрицам большей размерности
- 65. Свойства матрицы планирования
- 66. Оценка коэффициентов линейной модели ПФЭ. Учет нелинейности при оценке коэффициентов модели ПФЭ
- 67. Планирование дробного факторного эксперимента. Обобщенное правило для сокращения числа опытов
- 68. Выбор полуреплик. Определяющие контрасты и генерирующие соотношения. Разрешающая способность, главные полуреплики
- 69. Проведение обработки результатов эксперимента, погрешность воспроизводимости эксперимента, понятие рандомизации
- 70. Вычисление коэффициентов модели при обработке результатов эксперимента, проверка адекватности модели, проверка значимости отдельных коэффициентов регрессии
- 71. Принятие решений после построения модели процесса при адекватности линейной модели

- 72. Построение интерполяционной формулы при неадекватности линейной модели
- 73. Планирование эксперимента при решении задачи оптимизации методом градиента Сущность методики Бокса-Уилсона
- 74. Принятие решения при неэффективности крутого восхождения

2.3 Оценивание выполнения тестов

Шкала оценок	Показатели	Критерии
Отлично	1. Полнота выполнения	Выполнено более 85 % заданий
(высокий уровень	тестовых заданий;	предложенного теста, в заданиях
сформированности	2. Своевременность	открытого типа дан полный, развернутый
компетенции)	выполнения;	ответ на поставленный вопрос
Хорошо	3. Правильность ответов	Выполнено более 70 % заданий
(достаточный	на вопросы;	предложенного теста, в заданиях
уровень	4. Самостоятельность	открытого типа дан полный, развернутый
сформированности	тестирования;	ответ на поставленный вопрос; однако
компетенции)	5. <i>u m.d</i> .	были допущены неточности в определении
ŕ		понятий, терминов и др.
Удовлетворительно		Выполнено более 54 % заданий
(приемлемый		предложенного теста, в заданиях
уровень		открытого типа дан неполный ответ на
сформированности		поставленный вопрос, в ответе не
компетенции)		присутствуют доказательные примеры,
		текст со стилистическими и
		орфографическими ошибками.
Неудовлетворительно		Выполнено не более 53 % заданий
(недостаточный		предложенного теста, на поставленные
уровень		вопросы ответ отсутствует или
сформированности		неполный, допущены существенные
компетенции)		ошибки в теоретическом материале
		(терминах, понятиях).

2.4 Оценивание выполнения презентаций

Шкала оценок	Показатели	Критерии
Отлично (высокий уровень сформированности компетенции)	 Полнота выполнения презентаций; Своевременность выполнения; Правильность ответов 	Выполнены все требования к составлению презентаций: дизайн слайдов, логика изложения материала, текст хорошо написан и сформированные идеи ясно изложены и структурированы
Хорошо (достаточный уровень сформированности компетенции)	на вопросы; 4. и т.д.	Основные требования к презентациям выполнены, но при этом допущены недочеты. В частности, имеются неточности в изложении материала; отсутствует логическая

Удовлетворительно (приемлемый уровень сформированности компетенции)	последовательность в суждениях; не выдержан объем презентации Имеются существенные отступления от требований к презентациям. В частности: тема освещена лишь частично; допущены фактические ошибки в содержании презентаций или при ответе на дополнительные вопросы.
Неудовлетворительно (недостаточный уровень сформированности компетенции)	Тема презентации не раскрыта, обнаруживается существенное непонимание проблемы

3. Информационное обеспечение дисциплины «Численные методы»

Основная литература

- 1. Зарубин В. С. Математическое моделирование в технике. М.: Издательство МГТУ им. Н. Э. Баумана, 2001.
- 2. Ландау Л. Д., Лифшиц Е. М., Курс теоретической физики, т. т. 1, 3, 6, 7, 8, М., Наука, 1992 и более поздние издания.
- 3. Моргунов Б. И., Кравчук С.П., Майборода В. П., Математическое моделирование физико- механических процессов, М., Изд. МГИЭМ, 1994.
- 4. Гречко Л. Г., Суганов В. И., Толмасевич О. Ф., Федорченко А. М., Сборник задач по теоретической физике, М., Высшая школа, 1984.

Дополнительная литература

- 1. Ильюшии А.А., Механика сплошной среды, М., Изд. МГУ, 1971 и более поздние издания
- 2. Тамм И.Е., Основы теории электричества, М., Наука, 1989 и более поздние издания.
- 3. Тарасик В. П. Математическое моделирование технических систем. Минск: ДизайнПРО, 1997.
- 4. Тихонов А. Н., Самарский А.А., Уравнения математической физики, М., ФМ, 1963 и более поздние издания.
- 5. Канторович Л. В., Крылов В. И., Приближенные методы высшего анализа, М., ФМ.1962.
- 6. Моргунов Б.И. Математическое моделирование связанных физических процессов, М., изд. МГИЭМ, 1997.